Abstract
The implementation of synthetic jets for use in the cooling of electronics is a relatively new technology. It is well established that effective rates of cooling can be achieved using conventional steady flow impinging jets. However it has been shown that synthetic jets can deliver similar cooling effects without the need for an air supply system and therefore represent an extremely promising alternative for thermal management applications. A study has been undertaken of the heat transfer distribution to an impinging synthetic jet flow. The jet is directed at a heated copper plate, which approximates a uniform wall temperature. Nusselt number profiles generated by the synthetic jet for various Reynolds numbers and heights above the plate were obtained. Time varying velocity measurements were also carried out to provide information about the flow characteristics of the synthetic jet and to aid with evaluation of the heat transfer data. For continuous jets mean heat transfer distributions have been shown to have a direct relation to jet velocity profiles, however, for synthetic jets fluctuations in local heat flux illustrate a significant dependence on the driving frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.