Abstract

This paper summarises some of our recent work on the heat transfer of nanofluids (dilute liquid suspensions of nanoparticles). It covers heat conduction, convective heat transfer under both natural and forced flow conditions, and boiling heat transfer in the nucleate regime. The results show that, despite considerable data scattering, the presence of nanoparticles enhances thermal conduction under macroscopically static conditions mainly due to nanoparticle structuring/networking. The natural convective heat transfer coefficient is observed to decrease systematically with increasing nanoparticle concentration, and the deterioration is partially attributed to the high viscosity of nanofluids. However, either enhancement or deterioration of convective heat transfer is observed under the forced flow conditions and particle migration is suggested to be an important mechanism. The results also show that the boiling heat transfer is enhanced in the nucleate regime for both alumina and titania nanofluids, and the enhancement is more sensitive to the concentration change for TiO2 nanofluids. It is concluded that there is still some way to go before we can tailor-make nanofluids for any targeted applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.