Abstract
Image super-resolution (SR) is a critical image preprocessing task for many applications. How to recover features as accurately as possible is the focus of SR algorithms. Most existing SR methods tend to guide the image reconstruction process with gradient maps, frequency perception modules, etc. and improve the quality of recovered images from the perspective of enhancing edges, but rarely optimize the neural network structure from the system level. In this article, we conduct an in- depth exploration for the inner nature of the SR network structure. In light of the consistency between thermal particles in the thermal field and pixels in the image domain, we propose a novel heat-transfer-inspired network (HTI-Net) for image SR reconstruction based on the theoretical basis of heat transfer. With the finite difference theory, we use a second-order mixed-difference equation to redesign the residual network (ResNet), which can fully integrate multiple information to achieve better feature reuse. In addition, according to the thermal conduction differential equation (TCDE) in the thermal field, the pixel value flow equation (PVFE) in the image domain is derived to mine deep potential feature information. The experimental results on multiple standard databases demonstrate that the proposed HTI-Net has superior edge detail reconstruction effect and parameter performance compared with the existing SR methods. The experimental results on the microscope chip image (MCI) database consisting of realistic low-resolution (LR) and high-resolution (HR) images show that the proposed HTI-Net for image SR reconstruction can improve the effectiveness of the hardware Trojan detection system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.