Abstract

This work aims to develop a transient three-dimensional mathematical model to predict the temperature distribution in a fixed-bed elliptical cylindrical reactor to different geometric aspect ratio (L2/L1=1.5, 2.0 and 3.0). The model considers variable thermo-physical properties, a flat temperature profile at the fluid inlet, as well as a variable porosity model. The governing equation is solved using the finite volume method, coupled with WUDS interpolation scheme and fully implicit method. Results of the temperature profile along the reactor are presented and discussed at different times. As results, it was found that the maximum rate of heat transfer within the reactor occurs near the minor half-axis region of the ellipse (cross-section area of the reactor) and it intensifies over time and that the dimensionless temperature profile is practically unchanged with the aspect ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call