Abstract
There are two volumetric heat sources in a liquid-metal sliding electrical contact for a homopolar device: Joulean heating and viscous dissipation. The Joulean heating is created by the presence of electric currents; the viscous dissipation results from the motion of the liquid metal and is enhanced by magnetohydrodynamic (MHD) effects. In a homopolar device, the liquid metal is confined to a small gap between the perimeter of a rotating disk and the surrounding static surface. The maximum temperature achieved within the liquid metal is significantly larger for an MHD flow than for an ordinary hydrodynamic flow, a flow in the absence of a magnetic field. Information concerning the temperature distribution within the liquid metal and solid parts of a homopolar device will result in the design of efficient and operational sliding electrical contacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.