Abstract
This study investigates the thermal and hydrodynamic effects of incorporating nanomaterials to the continuous and gas-liquid Taylor flows in mini scale tubes. Aluminum Oxide nanopowder was dispersed in distilled water to produce three nanofluid concentrations: 1, 2 and 4 wt% using a two-step method. Heat transfer enhancement in miniscale tubes (1.5 mm) was assessed using Nusselt number and dimensionless mean wall heat flux. The experiments were conducted under laminar developing flow with isothermal boundary condition. In addition, nanofluid experiments covered: thermal conductivity measurements, scanning electronic microscopy, and performance efficiency analysis. The thermal and hydrodynamic effects of incorporating nanoparticles to the base fluid were evaluated using performance efficiency analysis which considers friction factor and Nusselt number. The results demonstrated that heat transfer enhancement is associated with the nanoparticles concentration when compared with Graetz theory. Total enhancement in segmented nanofluid flows was observed to be a combination of the individual contributions of internal circulations within the liquid slugs and the interaction between the nanoparticles. Overall, the present study highlights the potential of heat transfer enhancement within mini/micro tubes using segmented nanofluid flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.