Abstract

In this work, the heat transfer to the Couette-Poiseuille flow of a nonlinear viscoelastic fluid obeying the Giesekus model between parallel plates for the case where the lower plate is at rest and the upper one moves at constant velocity is studied. The momentum equation is analytically solved and the effect of dimensionless pressure gradient (G), Giesekus model parameter (α) and Deborah number (De) on the velocity profile is investigated. To analyze the influence of viscous dissipation on the heat transfer, the energy equation is solved by a finite volume method for two different thermal boundary conditions: uniform wall heat flux (Case 1) and constant wall temperature (Case 2). The results show strong effects of the viscoelastic parameters on the velocity and temperature profiles. It is observed that the viscous dissipation is responsible for the variation in the bulk fluid temperature and the effect of viscous heating depends on the values of dimensionless pressure gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.