Abstract

The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls: all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000. pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55 and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators lead to substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horseshoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call