Abstract

The heat transfer characteristics in a rotating pin-fin roughened rectangular channel with an aspect ratio of 4:1 is investigated, simulating a rotor blade trailing edge. The copper plate regional average method is used to determine the heat transfer coefficient. A second inlet is added at the inner top corner of the traditional one-inlet cooling channel to improve heat transfer in the high radius region. Coolant from these two inlets mixes in the middle of the channel, and then exits through eight sidewall slots. The channel is assembled in a rotating facility, and the symmetrical plane of the rectangular channel is orientated at an angle of 135° with respect to the rotation plane. The mass flow rate of the bottom inlet is kept at a constant (Re1 = 20,000), whereas the inlet mass flow rate ratio (MR, second inlet mass flow rate/bottom inlet mass flow rate) changes from 0 to around 0.55. Results show that the second inlet improves the heat transfer in the proximity of the second inlet extensively, but the overall averaged heat transfer is decreased a bit compared to the one inlet channel. Moreover, with the local MR, the heat transfer data at different locations converge into the same trend, indicating that the local MR should be a good parameter in describing the flow in this pin-fin cooling channel. In the rotating one-inlet channel (MR = 0), a critical Ro phenomenon is observed. After the critical point, rotation stops decreasing heat transfer and starts to elevate it. A lower critical Ro is observed at higher radius location but the corresponding local Ro is a constant at around 1.0. In rotating two-inlet channel, the overall heat transfer enhancement caused by rotation is almost in the same level with different MR, indicating that high MR cases (MR > 0.2) is not recommended because the coolant from the second inlet is not efficiently used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.