Abstract

This paper presents a numerical analysis of heat transfer in an experimental inner pressurized mechanical face seal, using CFD. The configuration is similar to the laminar flow between a static and a rotating disc bounded by a co-rotating sidewall. A series of simulations allow the authors to propose a correlation for the global Nusselt number for the rotating ring and the static disc. The Nusselt number is a function of the Reynolds number of the flow and the Prandtl number, as well as of the ratio of the fluid and material thermal conductivities. This last conclusion arises from the fact that the heat source is located in the contact between the rotor and the stator and depends on the temperature distribution in the solids. The cooling oil flow appears not to affect the Nusselt number. The numerical results were validated by comparison with measurements carried out on the experimental seal by means of an infrared camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.