Abstract

The aim of this work is to study heat transfer in a laboratory scale crater bed, which was set up from a cylindrical acrylic/quartz tube, using sand as the bed particle. The bed employs a downward gas jet from a nozzle which causes the particles to ascend fountain-like into the freebroad, leaving a crater on the bed surface. After reaching a certain height, these particles will descend again to the bed surface and move into the crater, where the cycle or circulation pattern starts again. The study had been separated into three parts. Firstly, the void fraction of the bed fountain zone was studied by direct measurement of the ascending sand weight within the specific volume. Secondly, the convection heat transfer coefficients between the fountain zone and the external surface of the gas inlet tube were determined by measuring the quantity of heat loss from an electrical heater that was wrapped on the outside surface at desired positions of the gas inlet tube. Thirdly, the radiation heat transfer coefficients were evaluated by heat balance of LPG combustion in the crater bed. From experimental results, the void fraction of the fountain zone could be approximated as a dilute bed (>0.98). For convective heat transfer coefficients, the value found experimentally varied from 80–260 W/m 2 K depending on the experimental conditions, showing an increase when the gas velocity increases, and a decrease along the height of the gas inlet tube. Radiation heat transfer coefficients, the values of which are (within the experimental temperature range), the same order as the convective mode, increase when the bed temperature is increased and when the bed particle diameter is decreased. Empirical correlations for both bed voidage and heat transfer coefficients are proposed. The combined model, gas and particle convection and the published data on radiation heat transfer, showed good prediction when compared with experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call