Abstract

In this paper, we present a heat transfer problem in a binary inert mixture of ideal gases at rest between two parallel plates. For the description of the phenomenon, we have considered the field equations of a linearized extended thermodynamics theory with 13 moments, under the assumption of a common temperature for both the constituents. The solution of the system of equations presents non-controllable boundary values, for which a fluctuation principle is applied. We found that, unlike classical thermodynamics, the 13-moment field equations predict thermal diffusion effects and exhibit solutions with boundary layers. Moreover, the results are qualitatively similar to those obtained from the kinetic theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.