Abstract
Studying heat transfer in 3D water or ice basins involves the solution of Navier energy transport. The method used in this paper is based on a Finite Volume technique where physical quantities and boundary conditions are approximated by means of high order formulae and the time advance is dealt with by a fractional step technique. This paper is mainly concerned with applications, but, with respect to a preceding version of the method, an evaluation of performance of techniques dealing with the turbulent viscosity in water basins is presented and a study of the temperature field in a glacier is included. The method is applied to a thermal discharge in a water basin of lower temperature and to a portion of the Priestley Glacier (Antarctica). The results are very accurate and coherent with the physical theory and with measured data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.