Abstract

Results of unique heat transfer measurement in beds of fine, cracking catalyst particles, fluidized by air or helium gas, are compared with predictions from a theoretical model presented in the literature, and also with an earlier established empirical correlation. Moreover, the results have been related to dense phase flow conditions around a silver heat transfer probe by a simple turbulence model. A maximum heat transfer coefficient of h = 2300 W/m2K has been measured in a bed of 14?m (average diameter) particles, fluidized by helium gas. The data collected, and the model developed, can be used for the design of heat transfer tubes in fluidized beds of fine particles as for instance in fluid catalytic cracking (FCC) of crude oil heavy residues. The FCC is one of the most important conversion processes in the petroleum refineries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.