Abstract

An experimental study is conducted on a simulated internal cooling channel of a turbine airfoil using angled grooves and combination of grooves-ribs to enhance the heat transfer from the wall. The grooves are angled at 45 deg to the mainstream flow direction and combinations of four different geometries are studied that include (1) angled grooves with a pitch, p/δ = 10, (2) angled groove with a larger pitch, p/δ = 15, (3) combination of angled groove and 45 deg angled rib, and (4) combination of angled groove with transverse rib. Transient liquid crystal experiments are conducted for a Reynolds number range of 13,000–55,000, and local and averaged heat transfer coefficient values are presented for all the geometries. Pressure drops are measured between the inlet and the exit of the grooved channel and friction factors are calculated. The combination of the angled groove and 45 deg angled rib provided the highest performance factor of the four cases considered, and these values were higher or comparable to among the best-performing rib geometries (45 deg broken ribs) commonly used in gas turbine airfoils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.