Abstract
Boiling experiments of pure water, aqueous n-butanol solutions and pure butanol were conducted in arrays of parallel microchannels with a cross-section of 25 × 25 μm and 50 × 50 μm. The introduction of 2% and 6% n-butanol solutions into microchannels with the mass fluxes ranging from 83 kg/m2 s to 208 kg/m2 s demonstrated an enhanced heat transfer during boiling compared to pure water and pure butanol. Both concentrations of butanol lowered the maximum temperature measured during boiling in the microchannel test section for approximately 10 K and 30 K compared to pure water and pure butanol, respectively. High-speed visualization, measurements of the contact angles and analysis of the surface roughness indicated that enhanced heat transfer originates from the improved wettability of the butanol solutions during boiling in microchannels, which is directly related to the positive surface tension gradient and the Marangoni effect. The self-rewetting property of the butanol solutions stimulated the formation of a well pronounced annular flow, enhanced the heat transfer and substantially lowered the temperatures measured in the microchannels during boiling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.