Abstract

Various techniques have been tested on heat transfer enhancement to upgrade the involving equipment, mainly in thermal transport devices. These techniques unveiled significant effects when utilized in heat exchangers. One of the most essential techniques used is the passive heat transfer technique. Corrugations represent a passive technique. In addition, it provides effective heat transfer enhancement because it combined the features of extended surfaces, turbulators and artificial roughness. Therefore, A Computational Fluid Dynamics was employed for water flowing at low Reynolds number in spiral corrugated tubes. This article aimed for the determination of the thermal performance of unique smooth corrugation profile. The Performance Evaluation Criteria were calculated for corrugated tubes, and the simulation results of both Nusselt number and friction factor were compared with those of standard plain and corrugated tubes for validation purposes. Results showed the best thermal performance range of 1.8–2.3 for the tube which has the severity of 45.455×10−3 for Reynolds number range of 100–700. The heat transfer enhancement range was 21.684%–60.5402% with friction factor increase of 19.2–36.4%. This indicated that this creative corrugation can improve the heat transfer significantly with appreciably increasing friction factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.