Abstract
Nanofluids are said to have high potential applicability as an enhanced thermophysical heat transfer fluid and are also related to CMC (carboxymethyl cellulose) due to their increased thermal conductivities. The intention of this research is to investigate and analyze the free convection flow of a second grade MHD heat transfer of CNTs on a vertically static plate with a constant wall temperature. The two types of CNTs are immersed in CMC, named multiple wall carbon nanotubes (MWCNTs) and single-wall carbon nanotubes (SWC-NTs). Nanofluids have been determined to offer a great potential application as an improved thermophysical heat transfer fluid, also due to their higher thermal conductivities. The problem is formulated as PDEs with initial and boundary conditions that are transformed into dimensionless structures by using unique non-dimensional variables. The general solution to the problem is achieved by utilizing the Laplace Transformation approach and obtaining the exact solutions for velocity, temperature, and shear stress. We compared the solutions of SWCNTs and MWCNTs regarding parameters such as Grashof number, relaxation time, Prandtl number, and volume fraction of nanoparticles. The results are significantly influenced by the differences in SWCNTs andMWCNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.