Abstract

Numerical analysis is performed to examine the heat transfer enhancement of Au, Al 2 O 3 , Cu and TiO 2 water-based nanofluids. The analysis uses a two-dimensional enclosure under natural convection heat transfer conditions and has been carried out for the Rayleigh number range 10 3 < Ra ≤ 10 5 , and for the nanoparticles' volume fraction range 0 ≤ ϕ < 0,10. The governing equations were solved with the standard finite-volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. Highly accurate numerical results are presented in the form of average Nusselt number and heat transfer enhancement. The results indicate clearly that the average Nusselt number is an increasing function of both, Rayleigh number and volume fraction of nanoparticles. The results also indicate that heat transfer enhancement is possible using nanofluids in comparison to conventional fluids, resulting in the compactness of many industrial devices. However, low Rayleigh numbers show more enhancement compared to high Rayleigh numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.