Abstract
The isothermal friction factor and heat transfer enhancement through a square duct fitted with increasing and decreasing order of twist ratio sets have been studied under nearly uniform wall temperature conditions. The ethylene glycol flows under laminar flow (Re = 30–1200) through a square duct and hot water flows through an annular channel formed between a square duct and circular tube, in a counter current fashion. The hot water at a very high flow rate is circulated though the annular channel to ensure a nearly uniform wall temperature condition. There is not much change in the magnitude of the heat transfer coefficient enhancement with the increasing twist ratio and with the decreasing twist ratio set, as the intensity of the swirl generated at the inlet or at the outlet in the order of increasing twist ratio or decreasing twist ratio, is the same in both the cases. Performance evaluation analysis on constant pumping power was made and a maximum performance ratio was obtained for each twist insert corresponding to a Reynolds number of 680. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.20410
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.