Abstract

A comprehensive numerical study is performed on the fluid flow and heat transfer within a porous solar heater. The effects of porous material on the heat transfer enhancement and pressure drop are presented in details. Also, the attention is focused on the effects of several parameters on the combined convection–radiation heat transfer and flow structures. Volume averaged equations are applied to simulate the transport phenomena within the porous substrate. Furthermore, the regular continuity, momentum, and energy equations are used in the clear fluid region. These equations are discretized using the control volume technique. It is found that the Nusselt number increases by inserting the porous substrate to the heater. These augmentations are up to 3, 4.4 and 5.9 times for δ=1/3, 2/3 and 1, respectively at Da=10-2. Also, the pressure drop increases with an increase in the porous layer thickness and decrease in the Darcy number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.