Abstract

Several boiling regimes are characterized by intermittent contacts of vapor and liquid at the superheated wall surface. A microthermocouple probe was developed capable of detecting transient surface temperatures with a response time better than 1 ms. The transient temperature data were utilized to determine the time-varying heat flux under liquid contacts. The instantaneous surface heat flux was found to vary by orders of magnitude during the milliseconds of liquid residence at the hot surface. The average heat flux during liquid contact was found to range from 105 to 107 W/m2 for water at atmospheric pressure, as wall superheat was varied from 50 to 450°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.