Abstract

An experimental study of heat transfer in metal foam heat exchangers fabricated from 10 and 40 pores per inch (PPI) was conducted. Heat exchangers were made by either brazing Inconel sheets to foam or plasma spraying Inconel skins on the foam. A burner test rig was built to produce high temperature combustion gases at either 550 °C or 750 °C that were passed over the exposed surface of heat exchangers that were cooled by passing air through them at rates of up to 200 SLPM. Both pressure drop and temperature rise of the air were measured. Friction factors and volumetric heat transfer coefficients were calculated for air velocities varying from 0.1 to 5 m/s and dimensionless correlations to predict these derived. The heat exchangers with 40 PPI foam were measured to have higher heat transfer rates and larger pressure drop than those with 10 PPI foam. Thermal sprayed heat exchangers were found to perform better than those that were brazed since they had lower thermal contact resistance between the external shell and foam struts. An analytical model was developed assuming local thermal nonequilibrium (LTNE) and predictions from model were found to be in good agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call