Abstract

The object of this investigation is to resolve the discrepancy between theory and experiment for the case of heat transfer during film condensation of liquid metal vapors. Calculations from kinetic theory show that with liquid metals a significant thermal resistance can exist at the liquid-vapor interface. This resistance increases with decreasing vapor pressure and is dependent on the value of an accommodation coefficient, named the “condensation coefficient” in this case. Experimental work verifying this hypothesis of a liquid-vapor interfacial resistance is presented here for mercury condensing at low pressures in the absence of noncondensable gases on a vertical nickel surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.