Abstract

Adsorption refrigeration and heat pump systems have been considered as very important means for the efficient use of low grade thermal energy in the temperature range of 60–150°C. Sorption systems are merely heat exchanger based thermodynamic systems, and therefore a good design to optimize heat and mass transfer with reaction or sorption processes is very important for high performance of the systems. Studies on heat and mass transfer enhancement in adsorption beds have been done extensively. Notable techniques is whereby the adsorbent bed is fitted with finned heat exchanger embedded with adsorbent particles, or the adsorbent particles may be compressed and solidified and then coupled with finned tube or plate heat exchangers. The use of expanded graphite seems to be an effective method to improve both heat and mass transfer in the reaction bed. Studies have also shows the need to enhance the heat transfer in adsorption bed to match with the heat transfer of thermal fluids. Use of heat pipes and good thermal loop design could yield higher thermal performances of a sorption system, when coupled with adsorption beds to provide heating and cooling to the beds. A novel design with passive evaporation, known as rising film evaporation coupled with a gravity heat pipe was introduced for high cooling output. It has also been shown that heat and mass recovery in the internal sorption systems is critical, and novel arrangement of thermal fluid and refrigerant may result in high performance sorption systems. Based upon the above researches, various sorption systems have been developed, and high efficient performances have been reached. Typical sorption systems include (1) A silica gel-water adsorption water chillier with a COP about 0.55 when powered with 80°C hot water, (2) A CaCl2-ammonia adsorption refrigerator with a COP over 0.3 at −20 °C when powered with 120 °C water vapor, which has a specific cooling power about 600 W/kg-adsorbent. The above mentioned systems have shown that solid sorption systems have become market potential products, and low grade thermal energy, which is usually considered as waste heat, could be utilized to provide high grade cooling. This paper gives details of high efficient solid sorption systems recently developed, their heat transfer design, thermodynamic system coupling, and performance test results. Some examples of low grade thermal powered cooling systems are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.