Abstract
Leakage flow between the rotating turbine blade tip and the fixed casing causes high heat loads and thermal stress on the tip and near the tip region. For this study, new squealer tips called partial cavity tips, which combine the advantages of plane and squealer tips, were suggested, and the effects of the cavity shape on the tip heat transfer coefficient and film cooling effectiveness were investigated experimentally in a low speed linear cascade. The suggested blade tips had a flat surface near the leading edge and a squealer cavity from the mid-chord to trailing edge region to achieve the advantages of both blade tip types. The heat transfer coefficient was measured via the 1-D transient heat transfer technique using an IR camera, and the film cooling effectiveness was obtained via the pressure sensitive paint (PSP) technique. Results showed that the heat transfer coefficient and film cooling effectiveness on the partial cavity tips strongly depended on the cavity shape. Near the leading edge, the heat transfer coefficients for the partial cavity tip cases were lower than that for the squealer tip case. However, the heat transfer coefficient on the cavity surface was higher for the partial cavity tip cases. The D10 tip showed a similar distribution of film cooling effectiveness to that of the PLN tip near the leading edge and the DSS tip near the mid-chord region. However, the overall averaged film cooling effectiveness of the DSS tip was higher than that of the D10 tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.