Abstract
A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.