Abstract

A falling film heat transfer test facility has been built for the measurement of falling film evaporation in a vacuum of about 1000 Pa. At this condition, only convective evaporation occurred in the liquid film. The Reynolds numbers of falling film over a range from 21.6 to 108.1 were tested on six-tube arrays made of enhanced or smooth tubes. Results show that the tubes with both enhanced outer and inner surfaces give high heat flux. Besides, as the Reynolds number increases, the heat transfer enhancement ratio of falling film evaporation decreases. A semi-analytical correlation is established to predict the heat transfer coefficients of falling film evaporation on smooth tube arrays, considering the contributions of partially dryout and fully wet regimes, respectively. For enhanced tubes, the heat transfer enhancement ratios to the smooth tubes were also correlated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call