Abstract

AbstractThe heat transfer performance and energy consumption of CO2 desorption from rich N‐methyldiethanolamine (MDEA) solution were determined experimentally in a straight microchannel reactor. Nucleate boiling was found to be the dominant heat transfer mechanism in this experiment. The heat transfer coefficients were strongly dependent on the heat flux. The solution flow rate was the most influential factor on the heat flux, followed by desorption temperature, MDEA concentration, and CO2 loading. In addition, an empirical correlation was proposed to predict the experimental heat transfer coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.