Abstract

Passive cooling based on natural circulation is utilized in ex-vessel core catcher system of an advanced nuclear reactor to handle severe accident scenario. The core catcher coolant channel has a unique geometry which consists of heated downward-facing slightly inclined and vertical surfaces. A full height experimental facility with natural circulation driven flow to model ex-vessel core catcher system was designed using scaling analysis. In this study, the cooling capability and heat transfer characteristics of the ex-vessel core catcher system was carried out. Two-phase flow parameters and wall temperatures were measured under a uniform heat flux condition. Two-phase flow structures were identified by high-speed camera visualization along with measurements of two local parameters, void fraction and re-wetting time. The wall temperature and local heat transfer coefficient distribution along the cooling channel were obtained by direct measurements of the heater surface and liquid temperature. The cooling performance of the core catcher system was analyzed based on the experimental results. The results indicated that the core catcher coolant system provides adequate cooling and maintains the integrity of the core catcher plate for prototype heat flux conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call