Abstract
AbstractTurbulent, rapidly rotating convection has been of interest for decades, yet there exists no generally accepted scaling law for heat transfer behaviour in this system. Here, we develop an exact scaling law for heat transfer by geostrophic convection, $\mathit{Nu}= \mathop{ (\mathit{Ra}/ {\mathit{Ra}}_{c} )}\nolimits ^{3} = 0. 0023\hspace{0.167em} {\mathit{Ra}}^{3} {E}^{4} $, by considering the stability of the thermal boundary layers, where $\mathit{Nu}$, $\mathit{Ra}$ and $E$ are the Nusselt, Rayleigh and Ekman numbers, respectively, and ${\mathit{Ra}}_{c} $ is the critical Rayleigh number for the onset of convection. Furthermore, we use the scaling behaviour of the thermal and Ekman boundary layer thicknesses to quantify the necessary conditions for geostrophic convection: $\mathit{Ra}\lesssim {E}^{\ensuremath{-} 3/ 2} $. Interestingly, the predictions of both heat flux and regime transition do not depend on the total height of the fluid layer. We test these scaling arguments with data from laboratory and numerical experiments. Adequate agreement is found between theory and experiment, although there is a paucity of convection data for low $\mathit{Ra}\hspace{0.167em} {E}^{3/ 2} $.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.