Abstract

Rapid advancement toward miniaturization has emerged with confront for superior heat dissipation techniques. Of all the available cooling systems, microchannel-based cooling systems stand out to provide better cooling performance through superior heat removal abilities. In the present study, the cooling performance and hydraulic flow characteristics of a radial curved microchannel with three curvature ratios were numerically investigated and compared with a radial straight microchannel. Unlike the conventional straight microchannels, curved channels possess better fluid mixing as a result of the centrifugal force caused due to curvature. This phenomenon has a significant effect on heat transfer and fluid flow characteristics. Work on radial curved microchannels has been scarce and there is a lot of potential to augment the heat transfer with lower pumping power particularly with a central inlet. A three-dimensional conjugate heat transfer analysis was carried out for three radial curved microchannels and a radial straight microchannel using the ANSYS Fluent commercial software with the Reynolds number range of 125–275. The results showed a Nusselt number increment of 36.38% for radial curved microchannels when compared to the radial straight microchannel. Further, the lowest average wall temperature was noted for the radial curved microchannel with a curvature ratio of 0.17 which was 15.63 °C lower when compared to that in a radial straight microchannel for the same Reynolds number. Contours of velocity and temperature are presented at various locations along the stream to aid the results. The overall performance of all three radial curved microchannels was found to be higher than that of the radial straight microchannel in the Reynolds number range considered, out of which the maximum performance factor of 1.245 was obtained for the radial curved microchannel with a curvature ratio of 0.17 as compared to the radial straight microchannel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call