Abstract

AbstractContinuous heat extraction is important for the process of freeze concentration of aqueous solutions, in which water is removed as solid ice. Three typical unsteady heat transportation patterns were distinguished at the subcooled surface of a scraped‐surface heat exchanger (SSHE) in this study. They were found in different stages of freeze concentration. Experimental measurement of the heat‐transfer coefficient in an SSHE showed that the overall heat‐transfer coefficient of stage III, which was characterized by ice formation on the cooler surface, was about 1.5 times higher than stage I, where no ice formed. Although the ice layer (also known as ice fouling) on a heat exchanger surface may be considered disadvantageous for heat transfer, the initial ice formation actually “boosted up” the heat transportation in an SSHE. The mechanism analysis and mathematical modeling of this phenomenon, however, have not been found in the literature. A mathematical model is developed and a unified expression of the heat‐transfer coefficient in an SSHE with/without phase change is presented. The model predicts a step increase of heat transfer occurs at the onset of ice formation and the maximum heat‐transfer coefficient exists in a narrow range right after reaching the freezing point. These are consistent with the experimental results of this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.