Abstract
Within the framework of the AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) project a direct measurement of the Earth’s gravitational acceleration on antihydrogen will be carried out. In order to obtain satisfactory precision of the measurement, the thermal movement of the particles should be reduced. Therefore a Penning trap, which is used to trap antiprotons and create antihydrogen, will be placed on a mixing chamber of an especially designed dilution refrigerator. The trap consists of 10 electrodes, which need to be electrically insulated, but thermally anchored. To ensure that the trap remains at a temperature below 100 mK, the heat transfer at the metallic-dielectric boundary is investigated. A copper – indium – sapphire – indium – copper sandwich setup was mounted on the CERN Cryolab dilution refrigerator. Keeping the mixing chamber at a constant low temperature in the range of 30 mK to 300 mK, steady-state measurements with indium in normal conducting and superconducting states have been performed. Obtained results along with a precise description of our setup are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.