Abstract

This paper concerns momentum and heat transfer to a nonevaporating oxidized steel spherical particle (diameter 6.5 mm − 8 mm) levitated at high Reynolds number in argon turbulent plasma jet flowing into cold air. The rapid rotation of the particle in the plasma flow ensures the stability of the levitation phenomenon over a wide range of plasma torch parameters. We use a dimensional analysis to describe the momentum transfer and the equilibrium levitation height data. The convective heat transfer coefficient was further estimated from gas and particle equilibrium temperature at the front stagnation point or from the analysis of the transient temperature signal for a particle abruptly immersed and levitated in the plasma jet. Particle rotation is shown to determine the heat transfer rate in a nonuniform plasma flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.