Abstract

The results of the study of heat transfer, crisis phenomena, and wave characteristics of laminar-wavy liquid films falling over a vertical three-dimensional texture surface have been considered. The R21/R114 freon mixture is served as a working fluid. Some peculiarities of heat transfer, hydrodynamics, and development of crisis phenomena in a binary liquid film falling over heat-releasing surfaces of different geometry have been revealed. The dependence of the heat-transfer coefficient on the flow rate for a three-dimensional texture surface in the regime of evaporation is shown to be similar to the dependence for a smooth surface with slightly intensified heat transfer in the region of inlet film Reynolds numbers of 100–500. The heat transfer coefficients of nucleate boiling on the studied types of structured surfaces are much lower than for a smooth tube. In the regime of undeveloped nucleate boiling, the critical heat flux for all surface types is deter-mined by the dependence obtained by considering the appearance of the heat transfer crisis in an evaporating wave liquid film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call