Abstract

In this paper, an absorption heat transformer (AHT) with falling film of aqueous LiBr solution inside vertical spiral tubes is installed and tested. The variations of coefficient of performance (COP), thermal efficiency (Eth ), and the heat transfer coefficient of the absorber at different falling film flow rates, hot water flow rates, and operating temperatures are investigated experimentally. The results demonstrated that the coefficient of performance and thermal efficiency of the system decrease with the increase in the flow rate of LiBr solution, and the influence of flow rate of hot water on COP and Eth is insignificant. The available COP in the experiments is higher than 0.4. The heat and mass transfer coefficients of the absorber increase with the increase of the flow rate of LiBr solution, up to 400W/m2/K and 0.013 kg/m2/s (temperature of waste heat is 90°C). The heat transfer coefficient of the absorber increases with the increase of the temperature of waste heat, and decreases with the increase of the cooling water temperature. Meanwhile, the computer code ABSIM (Absorption Simulation) is used to simulate the AHT systems, and the simulated results are compared with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call