Abstract

The study examined the performance of a novel staggered flow alternation structure in the Double-layer Microchannel Heat Sink (DMHS) based on authors' prior work and further detailed and quantitatively influences regarding the effects of the numbers of multiple staggered flow alternation structures are thoroughly investigated. Yet the analysis also contains more in-depth description about the entropy generation caused by heat transfer and liquid flow based on the second-law perspective. The major influential factors combining thermal performance and pressure drop penalty such as Nusselt number, Reynolds number, pumping power and thermal performance factor have been numerically studied. Moreover, the flow directions with parallel/counter stream were also compared in the present work. Through these detailed analysis, the propose multiple novel design offers much superior performance with better thermal uniformity and augment entropy generation number. The results show that the temperature difference of the substrate can be made quite uniformly by adding the number of multiple staggered flow alternation structure, and superior performance of the proposed DMHS can be achieved with affordable pressure drop penalty, while the DMHS with single alternation structure shows higher thermal performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.