Abstract
The heat transfer and fluid flow characteristics of a new type of fin with built-in interrupted delta winglets is studied in this paper by three-dimensional numerical simulation. In order to ensure reliability of numerical model, plate fin with common-flow-up delta winglets is firstly simulated. The comparison of numerical and experimental results shows a maximum deviation of 11.4% within the entire range of Reynolds number. The computational results show that heat transfer capacity and overall performance increase by 35–60% and 19–64%, respectively. The flow field visualization shows that the interrupted delta winglets can produce longitudinal vortices at the rear of delta winglets and reduce the wake zone behind the tube, so the proposed fin can enhance heat transfer accompanied by low pressure loss. The field synergy theory and entransy dissipation extremum principle are employed on analyzing the mechanism of heat transfer enhancement. The results indicate that enhancement heat transfer mechanism of interrupted delta winglets can be explained as the result of the decrease of synergy angle and reduction of the entransy dissipation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.