Abstract

Local instantaneous heat transfer between a submerged horizontal cylinder and a gas-fluidized bed operating in the bubble-flow regime was measured and the resulting signals analyzed. Unique to this investigation is the division of particle convective heat transfer into transient and steady-state contact dynamics through analysis of instantaneous heat transfer signals. Transient particle convection results from stationary particles in contact with the heat transfer surface and yields a heat transfer rate that decays exponentially in time. Steady-state particle convection results from active particle mixing at the heat transfer surface and results in a relatively constant heat transfer rate during emulsion phase contact. The average time of contact for each phase is assessed in this study. Signals were acquired using a constant-temperature platinum film heat flux sensor. Instantaneous heat transfer signals were obtained for various particle sizes by varying the angular position of the heat transfer probe and the fluidization velocity. Individual occurrences of emulsion phase heat transfer that are steady-state in nature are characterized by contact times significantly higher than both the mean transient and mean emulsion phase contact times under the same operating conditions. Transient and steady-state contact times are found to vary with angular position, particle size, and fluidizing velocity. Due to the extremely short transient contact times observed under these fluidization conditions, mean transient heat transfer coefficients are approximately equal to the mean steady-state heat transfer coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.