Abstract

Flow mechanisms, heat transfer and discharge coefficient characteristics for a representative part of a turbine casing cooling system, consisting of an array of 20 impinging jets, were numerically investigated. The study focused on the influence of the jet Mach number while maintaining the Reynolds number constant at Re = 7,500. Therefore, the orifice bore diameter or the fluid density had to be varied. The objectives of the current CFD simulations have not been adressed before in literature, not only because heat transfer characteristics and pressure drop are given for impingement jet Mach numbers up to 0.72 at a constant relatively low Reynolds number, but also because fundamental understanding of physical phenomena of the flow in the cylindrical plenum and in the small sharp-edged orifices at the bottom side of the tube is provided. Increasing the Mach number by simultaneously reducing the orifice diameters led to slightly decreasing Nusselt numbers, with average deviations of the order of 14%. However, the heat transfer coefficient increased considerably with increasing Mach number. On the contrary, the variation of the Mach number by varying the density showed only a slight influence on the heat transfer coefficient. The predicted discharge coefficients increased significantly by augmenting the Mach number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call