Abstract

A comprehensive understanding of heat transfer mechanisms and hydrodynamics during droplet impingement on a heated surface and subsequent evaporation is crucial for improving heat transfer models, optimizing surface engineering, and maximizing overall effectiveness. This work showcases findings related to heat transfer mechanisms and simultaneous tracking of the moving contact line (MCL) for subcooled impinging droplets across a range of surface temperatures, utilizing a custom MEMS device, at multiple impact velocities. Experimental results show that heat flux caused by droplet impingement has a weaker dependence on surface temperature than receding MCL heat transfer due to evaporation, which is significantly surface temperature dependent. The measurements also demonstrate that when a droplet impacts a heated surface and evaporates, the process can be divided into two segments based on the effective heat transfer rate: an initial conduction-dominated segment followed by another segment dominated by surface evaporation. For subcooled impinging droplets, the effect of oscillatory motion is found to be negligible, unlike in a superheated regime; hence, heat conduction into the droplet entirely governs the first segment. Results also show that heat flux at the solid-liquid interface of an impinging droplet increases with the rise of either impact velocity or surface temperature. In the subcooled regime, droplets impacting a heated surface have approximately 1.6 times higher vertical heat flux values than gently deposited droplets. Furthermore, this study quantifies the contributions of buoyancy and thermocapillary convection within the droplet to the overall heat transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call