Abstract

To perform thermochemical cycles using non-volatile metal oxides to split water and produce hydrogen, a directly irradiated fluidized bed reactor is designed and fabricated for beam-down configuration. As the main aim of this investigation is to analyze the heat transfer and particulate flow of the reactor, chemically inert particles are used. A transient 3D heat and mass transfer model is formulated by the combined approach of discrete element method and computational fluid dynamics. The radiative transfer is solved using the discrete ordinate radiation model. Experimental validation is accomplished by the measured temperatures, obtained with the fluidized bed reactor prototype tested under 30 kWth high-flux solar simulator. The model is applied to analyze the granular flow characteristics and efficiency of the reactor for various superficial gas velocities and bed masses. The results indicate that higher gas flow rate increases the velocity and convection loss of the bed and decreases the bed temperature and efficiency of the reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call