Abstract

Heat transfer and friction coefficients measurements have been obtained for fully developed, turbulent internal flows in circular tubes with six different concavity (dimple) surface array geometries. Two different concavity depths and three different concavity array densities were tested using tube bulk flow Reynolds numbers from 20,000 to 90,000. Liquid-crystal thermography was used to measure the temperature distributions on the outside of the concavity tubes. Using the average heat transfer coefficient for the fully developed region, the overall heat transfer enhancements are compared to baseline smooth tube results. Friction coefficients are also compared to values for a smooth tube. Dimple depths of 0.2–0.4 relative to the dimple surface diameter were used, with surface area densities ranging from 0.3 to 0.7. Dimple arrays were all in-line geometries. The results showed that heat transfer enhancements for dimpled internal surfaces of circular passages can reach factors of 2 or more when the relative dimple depth is greater than 0.3 and the dimple array density is about 0.5 or higher. The associated friction factor multipliers for such configurations are in the range of 4–6. The present study provides a first insight into the heat transfer and friction effects of various concavity arrays for turbulent flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.