Abstract
The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the underside of the absorber plate of a solar air heater duct. Under the present work, an experimental study has been carried out to investigate the effect of roughness and operating parameters on heat transfer and friction factor in a roughened duct provided with dimple-shape roughness geometry. The investigation has covered the range of Reynolds number ( Re ) from 2000 to 12,000, relative roughness height ( e / D ) from 0.018 to 0.037 and relative pitch ( p / e ) from 8 to 12. Based on the experimental data, values of Nusselt number ( Nu ) and friction factor ( f r ) have been determined for different values of roughness and operating parameters. In order to determine the enhancement in heat transfer and increment in friction factor values of Nusselt number and friction factor have been compared with those of smooth duct under similar flow conditions. Correlations for Nusselt number and friction factor have been developed for solar air heater duct provided such artificial roughness geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.