Abstract

Turbulent fully developed flow heat transfer coefficient and friction factor of Al2O3 nanoparticles are dispersed in water and ethylene glycol in circular tube is discussed in this paper. In order to validate the heat transfer coefficient and friction factor of nanofluid in circular tube commercially available CFD software FLUENT 6.0 is used. To achieve the fully developed flow condition, the aspect ratio (L/D) of the test section is equal to 94. The thermo-physical properties of the Al2O3 nanofluid are estimated by using the equations available in literature. Thermo-physical properties of the nanofluid are considered for heat transfer coefficient and friction factor by assuming nanofluid is a single-phase fluid. Constant Wall Heat Flux (CWHF) boundary condition is incorporated for heat transfer analysis and adiabatic boundary condition is incorporated for friction factor analysis. The analysis is conducted in the volume concentration range from 0.1% to 4%. A maximum of 2.25 times heat transfer enhancement and 1.42 times of friction is obtained by using nanofluid as working medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call