Abstract

To address the problem of low drying efficiency increasing lignite dryer size, a pulsation-assisted fluidized bed with horizontal tube bundles was built for investigating the heat transfer in lignite particles with the goal of enhancing the lignite drying rate by introducing a pulsed flow to increase the heat transfer rate. Results showed that the pulsation-assisted flow increased the heat transfer rates by a maximum of 50–100%. The heat-enhancement effect increased as the gas velocity increased, with 3 and 5 Hz pulsation-assisted flows demonstrating higher heat transfer rates than a 1 Hz flow. Local heat transfer rates showed a maximum value at the tube top for lignite. Simulation was conducted to analyze the details of the lignite particles and bubble movements to explain the heat transfer rate enhancement effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call