Abstract

Detailed local Nusselt number distributions in the first pass of a sharp turning two-pass square channel with various configurations of longitudinal vortex generator arranged on one wall were measured using transient liquid crystal thermography. Flow patterns and friction factors were measured by the use of laser-Doppler velocimeter and pressure transducer, respectively. The Reynolds number, based on channel hydraulic diameter and bulk mean velocity, was fixed at 1.2×104. The vortex generator height-to-hydraulic diameter ratio and pitch-to-height ratio were 0.12 and 10, respectively. Comparisons in terms of heat transfer augmentation and uniformity and friction loss are first performed on 12 configurations of single longitudinal vortex generator. The fluid dynamic mechanisms and wall confinement relevant to heat transfer enhancement are then documented for three-selected vortex generator models. In addition, the differences in fluid flow and heat transfer characteristics between a single vortex generator and a vortex generator array are addressed for the delta wing I and 45 deg V (with tips facing upstream) models which provide better thermal performance among the 12 configurations examined. The direction and strength of the secondary flow with respect to the heat transfer wall are found to be the most important fluid dynamic factors affecting the heat transfer promotion through the channel wall, followed by the convective mean velocity, and then the turbulent kinetic energy. [S0022-1481(00)01202-0]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.