Abstract

In this paper, a model of heat transfer of melt flow on a vibration wall has been established. Calculation results show that the temperature boundary layer thickness decreases with the increase of vibration frequency and amplitude. As the vibration frequency and amplitude increase, the heat transfer coefficient between alloy melt and slope and between cooling water and slope increase. Cooling rate of melt can reach 400-600 K/s which belong to the sub-rapid solidification regime. The heat transfer mode doesn’t change during the flow process, so vibration not only strengthens the cooling rate of melt, but also stabilizes heat transfer between melt and slope. The grain size of solidification microstructure decreases with increasing vibration intensity, which indicates that vibration increases cooling rate and accelerates nucleation rate. So, the established model agrees with verification experiment, and can relatively well explain the heat transfer and cooling rate of melt flow on vibration plate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call