Abstract

Integrated whole-boiler process models are useful in the design of biomass and coal-fired boilers, and they can also be used to analyse different scenarios such as low load operation and alternate fuel firing. Whereas CFD models are typically applied to analyse the detail heat transfer phenomena in furnaces, analysis of the integrated whole-boiler performance requires one-dimensional thermofluid network models. These incorporate zero-dimensional furnace models combined with the solution of the fundamental mass, energy, and momentum balance equations for the different heat exchangers and fluid streams. This approach is not new, and there is a large amount of information available in textbooks and technical papers. However, the information is fragmented and incomplete and therefore difficult to follow and apply. The aim of this review paper is therefore to: (i) provide a review of recent literature to show how the different approaches to boiler modelling have been applied; (ii) to provide a review and clear description of the thermofluid network modelling methodology, including the simplifying assumptions and its implications; and (iii) to demonstrate the methodology by applying it to two case study boilers with different geometries, firing systems and fuels at various loads, and comparing the results to site measurements, which highlight important aspects of the methodology. The model results compare well with values obtained from site measurements and detail CFD models for full load and part load operation. The results show the importance of utilising the high particle load model for the effective emissivity and absorptivity of the flue gas and particle suspension rather than the standard model, especially in the case of a high ash fuel. It also shows that the projected method provides better results than the direct method for the furnace water wall heat transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.